Cookie Policy

Ricoh uses data collection tools such as cookies to provide you with a better experience when using this site. You can learn how to change these settings and get more information about cookies here.

Ricoh to offer flexible environmental power generating device samples for the second phase of “A World Without Charging”

Ricoh and Kyushu University jointly develop a thin, light, bendable organic photovoltaic (OPV)

TOKYO, August 18, 2021 – The demand for the Internet of Things (IoT) is on the rise throughout society. Now, Ricoh’s flexible energy harvesting device efficiently generates power indoors or in shaded areas as a stand-alone power source for the constant operation of a variety of sensors. In September, Ricoh will start sample shipments of these devices.

The flexible energy harvesting device, sized 41mm by 47mm, uses a unique power generation organic photovoltaic (OPV) material developed jointly from 2013 in an industry-academia collaboration with Kyushu University. The result is efficient power generation in low-light environment, such as indoors (approximately 200 lx), and medium-light such as shaded outdoor areas (approximately 10,000 lx). In addition, the thin, lightweight, and bendable film can be mounted on IoT devices of various shapes.

These devices can be used as stand-alone power sources for mobile and portable wearable terminals, beacons, and is ideal for social infrastructure monitoring devices, such as ones installed in tunnels and under bridges. This will make it unnecessary to replace batteries in a wide variety of small consumer electronic devices, which is expected to improve convenience and contribute to the Sustainable Development Goal “Affordable and Clean Energy”. Since the release of solid-state dye-sensitized solar cells (DSSC) for indoor use in 2020, Ricoh aims to expand its product lineup as soon as possible by providing samples to IoT device manufacturers, service providers, and trading companies as the next environmental power generation device.

Kyushu University and Ricoh will continue to collaborate on research and development* to achieve even higher output and durability.

This research and development have been supported by JST's “Adaptable and Seamless Technology transfer Program through target-driven R&D (A-STEP) ” “Functional Innovation and Practical Technology Development of Organic Energy Harvesting Devices.”

Ricoh to offer flexible environmental power generating device samples for the second phase of “A World Without Charging”
Example of the connection to a flexible power supply board

Comments by Professor Takuma Yasuda, Inamori Frontier Research Center, Kyushu University
Energy harvesting is a future-oriented energy technology that supports our future IoT society through advanced use of environmental “ambient light.” We have been advancing energy harvesting research with Ricoh since 2013. The developed organic materials differ from conventional solar cell materials in that they exhibit excellent power generation performance even in indoor environments. The devices using these organic materials are as thin, light as paper, can be bent, and can generate power anytime and anywhere, even under dim-light conditions. This new energy technology is also expected to be widely implemented as a distributed and independent power source for various small electronic devices around us. We thus believe that this new energy technology will significantly contribute to achieving the SDG goal of “Affordable and Clean Energy”. Through the joint industry-academia project A-STEP, we will continue to promote further research and development of energy harvesting technologies that will contribute to our future society through close industry-government-academia collaboration.

Comments from Tetsuya Tanaka, General Manager, EH Business Center, RICOH Futures BU
Our future is to create “A World Without Charging”. We hope to realize a world where people do not have to consciously recharge or replace their batteries. The Internet of Things (IoT) brings the power of the internet beyond standard computers or smartphones to a wide range of objects. Data from sensors attached to those objects can be collected and uploaded to the internet. The data can be used to monitor environments or object locations wirelessly, without the need for batteries. The use of sensors is expected to increase in the future. Energy harvesting technologies using light, heat, vibration, etc., are attracting wide-spread attention as an effective, and efficient, power source that can power sensors continuously. Ricoh strives to realize a sustainable society and launched solid-state dye-sensitized solar cells (DSSC) in 2020. Now, we will be shipping samples of organic photovoltaic (OPV). We are also working on developing perovskite solar cells for the outdoors and even in space. We will continue to contribute to solving social issues through our business by expanding the applications of independent power sources to reduce the environmental impact through the growth of clean energy technology.

|About Ricoh|

Ricoh is empowering digital workplaces using innovative technologies and services enabling individuals to work smarter. For more than 80 years, Ricoh has been driving innovation and is a leading provider of document management solutions, IT services, communication services, commercial and industrial printing, digital cameras, and industrial systems.

Headquartered in Tokyo, Ricoh Group operates in approximately 200 countries and regions. In the financial year ended March 2020, Ricoh Group had worldwide sales of 2,008 billion yen (approx. 18.5 billion USD).

For further information, please visit ricoh.ie.

For further information, please contact:
Ricoh Ireland
Laura Barry
Tel: +353 1 895 3900
E-mail: laura.barry@ricoh.ie

Read our insights at: insights.ricoh.ie
Homepage: www.ricoh.ie
Follow us on Twitter: www.twitter.com/ricohireland
Connect with us on LinkedIn: https://www.linkedin.com/company/ricoh-ireland-limited
Visit the Ricoh media centre at: https://www.ricoh.ie/news-events/news/index.html